Tools | Workflow Orchestration Component | CI / CD component | ML Metadata Stores / Experiment Tracking | Model Training Infra | Model Registry | ML Testing | Model Serving Component | Monitoring Component | Is Open Source | On prem | Cloud | VPC | User Interface | Community Support / Documentation | Security and Governance | Integrations with other tools/ platforms | LLM support | Notes | Links |
Apache Airflow | Y | Y | Y | Y | Y | Y | Widely used orchestration tool by the community | ||||||||||||
AWS (SageMaker + additional AWS services) | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Uses MLFlow for experiment tracking | |||||
Azure Databricks | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Databricks platform can be used in AWS, Azure or GCP | https://azure.microsoft.com/en-gb/products/databricks#layout-container-uidfe1a | ||||
Azure (Machine Learning + additional Azure services) | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Uses MLFlow for experiment tracking | |||||
BentoML | Y | Y | Y | Y | Y | Y | Y | BentoCloud
provides a fully managed platform, freeing you from infrastructure concerns
and allowing you to focus on shipping AI applications. BentoCloud is built for multi-cloud environments, supporting AWS, Azure, and GCP (Google Cloud Platform). We also provide private deployment for enterprise customers who need advanced security control and specialized AI hardware support. |
https://bentoml.com/cloud https://github.com/bentoml/BentoML https://github.com/bentoml/OpenLLM |
||||||||||
Censius AI | Y | Y | Y | Y | Provides AI observability which is Monitoring+Accountability+Explainability | https://mlops.community/learn/monitoring/censius/ https://censius.ai/ https://censius.ai/mlops |
|||||||||||||
Comet ML | Y | Y | Y | Y | Y | Y | https://www.comet.com/site/products/llmops/ | ||||||||||||
DagsHub | Y (see notes) | Y (see notes) | Y | Y | Y | Y | Y | Y | Uses MLFLow's Experiment Tracking and Model Registry | https://dagshub.com/product/ | |||||||||
Data Version Control (DVC) | Y (see notes) | Y (see notes) | Y | Y | Y | Uses Git under the hood for Experiment Tracking and Model Registry | https://iterative.ai/ https://iterative.ai/blog/introducing-dvc-studio https://dvc.org/doc/studio |
||||||||||||
DataRobot (Algorithmia) | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | https://www.datarobot.com/platform/mlops/ | ||||||||
Evidently | Y | Y | Y | Y | Y | Y | Y | https://www.evidentlyai.com/ | |||||||||||
Fiddler AI | Y | Y | Y | Y | Y | Y | Y | Y | Provides AI observability which is Monitoring+Accountability+Explainability | https://www.fiddler.ai/mlops https://www.fiddler.ai/llmops |
|||||||||
Flyte | Y | Y | Y | Y | Y | workflow automation tool built on top of Kubernetes | https://flyte.org/blog/fine-tuning-large-language-models-with-declarative-ml-orchestration | ||||||||||||
GCP (VertexAI + additional GCP services) | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | ||||||
Hydrosphere | Y | Y | Y | Y | Y | The platform helps serving and monitoring on top of kubernetes. | https://docs.hydrosphere.io/ | ||||||||||||
Kedro | Y | Y | Y | Y | Y | Kedro
is an open-source Python framework hosted by the Linux Foundation (LF AI
& Data). Kedro uses software engineering best practices to help you build production-ready data science code. Check FAQs |
https://kedro.org/#features https://docs.kedro.org/en/0.17.1/index.html https://github.com/kedro-org/kedro-viz https://medium.com/@getindatatechteam/running-kedro-everywhere-machine-learning-pipelines-on-kubeflow-vertex-ai-azure-and-airflow-fb7e834e6b6e |
||||||||||||
Kubeflow | Y | Y | Y | Y | Y | Y | Y | Y | Y | Uses KServe for Model Serving | |||||||||
Metaflow | Y | Y | Y | Y | Y | Y | Y | https://docs.metaflow.org/getting-started/infrastructure | |||||||||||
MLFlow | Y | Y | Y | Y | Y | Y | Y | Y | Y | Cloud, On prem and Hybrid | |||||||||
Neptune | Y | Y | Y | Y | Y | Y | Y | Y | https://docs.neptune.ai/integrations/ | ||||||||||
Pachyderm | Y | Y | Y | Y | Y | Y | Y | The Community Edition is Open Source | |||||||||||
Polyaxon | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | The
Community Edition is Open Source Offers distributed training |
https://polyaxon.com/features/ https://polyaxon.com/product/ https://polyaxon.com/docs/management/ https://github.com/polyaxon/polyaxon |
|||||||
Prefect | Y | Y | Y | Y | Y | Y | Y | Y | Y | Paid
pricing for startups to large orgs Cloud Convenience; On-Prem Security. Prefect's hybrid execution model keeps your code and data private while still taking full advantage of our managed workflow orchestration service. It's so innovative, we patented it. Execution in your cloud; orchestration in ours. We designed the hybrid model to meet the strict standards of major financial institutions and companies that work with regulated data. Prefect Cloud never receives your code or data. It orchestrates Prefect 1.0, running on your private infrastructure, by exchanging state information and metadata. Lang chain prefect |
https://github.com/PrefectHQ/prefect https://www.prefect.io/why-prefect/hybrid-model/ https://www.prefect.io/guide/blog/keeping-your-eyes-on-your-ai-tools/ https://github.com/PrefectHQ/langchain-prefect |
||||||||
Seldon | Y | Y | Y | Y | Y | Y | Y | Y | Paid pricing for
startups to large orgs Explainable |
https://github.com/SeldonIO/seldon-core https://www.seldon.io/explain-with-seldon https://www.seldon.io/manage-with-seldon |
|||||||||
Valohai | Y | Y | Y | Y | Y | Y | Y | Y | https://valohai.com/blog/the-mlops-stack/ | ||||||||||
Weights & Biases | Y | Y | Y | Y | Y | Y | Y | https://wandb.ai/site/mlops-maturity-assessment https://wandb.ai/wandb_fc/mlops_course/reports/Using-W-B-Model-Registry-to-Manage-Models-in-Your-Organization--VmlldzozMjI1NTc2#:~:text=In%20this%20video%20from%20our,their%20metadata%2C%20metrics%20and%20lineage. https://wandb.ai/site/solutions/deployment-options |
|||||||||||
ZenML | Y | Y | Y | Y | Y | Y | Y | Y | Y | Paid
pricing for startups to large orgs It is a pipeline orchestrator ZenML Cloud is built on top of the core ZenML open-source offering. Your worklow won't change - your ML workloads will still run on your stack on your infrastructure. However, your ZenML server will be managed by us on our cloud. Compliance and governance won’t change - you are still in charge of where the data is stored, where processing happens and where models get deployed. ZenML runs out-of-the-box with powerful orchestrators like Kubeflow and Airflow, and if the tools you want to use do not have a ZenML integration, you can easily integrate them yourself. |
https://docs.zenml.io/platform-guide/set-up-your-mlops-platform https://www.zenml.io/cloud https://github.com/zenml-io/zenml https://zenml.io/integrations |
||||||||
MLRun | Y | Y | Y | Y | Y | Y | Y | ||||||||||||
Deepchecks | Y | Y | Y | Y | Y | Y | Open
source Testing Paid pricing for usage |
||||||||||||
Ray IO | Y | Y | Y | Y | Y | https://docs.ray.io/en/latest/index.html# | |||||||||||||
Wallaroo AI | Y | Y | Y | Y | Y | Y | Y | https://wallaroo.ai/ https://portal.wallaroo.community/ - community version |
|||||||||||
Anyscale | Y | Y | |||||||||||||||||
Aimstack | Y | Y | Y | Y | |||||||||||||||
Mage AI | Y | Y | Y | Y | Y | Y | |||||||||||||
ETIQ AI | Y | Y | |||||||||||||||||
GitHub | Y | Y | Y | Y | |||||||||||||||
Legends | |||||||||||||||||||
Yellow | optional | ||||||||||||||||||
Grey | Not required for maturity level 1 (i.e. Google's MLOPs Maturity level 1) | ||||||||||||||||||
Green | Main components | ||||||||||||||||||
Blue | Additional information | ||||||||||||||||||