Tools Workflow Orchestration Component CI / CD component ML Metadata Stores / Experiment Tracking Model Training Infra Model Registry ML Testing Model Serving Component Monitoring Component Is Open Source On prem Cloud VPC User Interface Community Support / Documentation Security and Governance Integrations with other tools/ platforms LLM support Notes Links
Apache Airflow Y               Y       Y Y   Y Y Widely used orchestration tool by the community  
AWS (SageMaker + additional AWS services) Y Y Y Y Y   Y Y     Y   Y Y Y Y Y Uses MLFlow for experiment tracking  
Azure Databricks Y Y Y Y Y   Y Y     Y   Y Y Y Y Y Databricks platform can be used in AWS, Azure or GCP https://azure.microsoft.com/en-gb/products/databricks#layout-container-uidfe1a
Azure (Machine Learning + additional Azure services) Y Y Y Y Y   Y Y     Y   Y Y Y Y Y Uses MLFlow for experiment tracking  
BentoML             Y   Y   Y   Y Y   Y Y BentoCloud provides a fully managed platform, freeing you from infrastructure concerns and allowing you to focus on shipping AI applications.

BentoCloud is built for multi-cloud environments, supporting AWS, Azure, and GCP (Google Cloud Platform). We also provide private deployment for enterprise customers who need advanced security control and specialized AI hardware support.
https://bentoml.com/cloud

https://github.com/bentoml/BentoML

https://github.com/bentoml/OpenLLM
Censius AI               Y         Y Y     Y Provides AI observability which is Monitoring+Accountability+Explainability https://mlops.community/learn/monitoring/censius/
https://censius.ai/
https://censius.ai/mlops
Comet ML     Y   Y     Y         Y Y     Y   https://www.comet.com/site/products/llmops/
DagsHub     Y (see notes)   Y (see notes)         Y Y   Y Y Y   Y Uses MLFLow's Experiment Tracking and Model Registry https://dagshub.com/product/
Data Version Control (DVC)     Y (see notes)   Y (see notes)       Y       Y Y       Uses Git under the hood for Experiment Tracking and Model Registry https://iterative.ai/

https://iterative.ai/blog/introducing-dvc-studio

https://dvc.org/doc/studio
DataRobot (Algorithmia)         Y   Y Y   Y Y   Y Y Y Y Y   https://www.datarobot.com/platform/mlops/
Evidently               Y Y     Y Y Y   Y Y   https://www.evidentlyai.com/
Fiddler AI               Y   Y Y   Y Y Y Y Y Provides AI observability which is Monitoring+Accountability+Explainability https://www.fiddler.ai/mlops

https://www.fiddler.ai/llmops
Flyte Y               Y       Y Y   Y   workflow automation tool built on top of Kubernetes https://flyte.org/blog/fine-tuning-large-language-models-with-declarative-ml-orchestration
GCP (VertexAI + additional GCP services) Y Y Y Y Y   Y Y     Y   Y Y Y Y Y    
Hydrosphere             Y Y Y       Y Y       The platform helps serving and monitoring on top of kubernetes. https://docs.hydrosphere.io/
Kedro Y               Y       Y Y   Y   Kedro is an open-source Python framework hosted by the Linux Foundation (LF AI & Data).

Kedro uses software engineering best practices to help you build production-ready data science code.

Check FAQs
https://kedro.org/#features

https://docs.kedro.org/en/0.17.1/index.html

https://github.com/kedro-org/kedro-viz

https://medium.com/@getindatatechteam/running-kedro-everywhere-machine-learning-pipelines-on-kubeflow-vertex-ai-azure-and-airflow-fb7e834e6b6e
Kubeflow Y       Y   Y   Y Y Y   Y Y   Y   Uses KServe for Model Serving  
Metaflow Y               Y Y Y   Y Y   Y     https://docs.metaflow.org/getting-started/infrastructure
MLFlow     Y   Y       Y Y Y   Y Y   Y Y Cloud, On prem and Hybrid  
Neptune     Y             Y Y Y Y Y Y Y     https://docs.neptune.ai/integrations/
Pachyderm Y               Y Y Y   Y Y   Y   The Community Edition is Open Source  
Polyaxon Y   Y   Y     Y Y Y Y   Y Y   Y   The Community Edition is Open Source

Offers distributed training
https://polyaxon.com/features/

https://polyaxon.com/product/

https://polyaxon.com/docs/management/

https://github.com/polyaxon/polyaxon
Prefect Y               Y Y Y Y Y Y Y Y   Paid pricing for startups to large orgs

Cloud Convenience; On-Prem Security.

Prefect's hybrid execution model keeps your code and data private while still taking full advantage of our managed workflow orchestration service.

It's so innovative, we patented it.

Execution in your cloud; orchestration in ours. We designed the hybrid model to meet the strict standards of major financial institutions and companies that work with regulated data.

Prefect Cloud never receives your code or data. It orchestrates Prefect 1.0, running on your private infrastructure, by exchanging state information and metadata.

Lang chain prefect
https://github.com/PrefectHQ/prefect

https://www.prefect.io/why-prefect/hybrid-model/

https://www.prefect.io/guide/blog/keeping-your-eyes-on-your-ai-tools/

https://github.com/PrefectHQ/langchain-prefect
Seldon             Y Y Y Y Y   Y Y   Y   Paid pricing for startups to large orgs

Explainable AI
https://github.com/SeldonIO/seldon-core

https://www.seldon.io/explain-with-seldon

https://www.seldon.io/manage-with-seldon
Valohai     Y             Y Y Y Y Y Y Y     https://valohai.com/blog/the-mlops-stack/
Weights & Biases   Y   Y         Y Y   Y Y     Y   https://wandb.ai/site/mlops-maturity-assessment

https://wandb.ai/wandb_fc/mlops_course/reports/Using-W-B-Model-Registry-to-Manage-Models-in-Your-Organization--VmlldzozMjI1NTc2#:~:text=In%20this%20video%20from%20our,their%20metadata%2C%20metrics%20and%20lineage.

https://wandb.ai/site/solutions/deployment-options

ZenML Y               Y   Y Y Y Y Y Y Y Paid pricing for startups to large orgs

It is a pipeline orchestrator

ZenML Cloud is built on top of the core ZenML open-source offering. Your worklow won't change - your ML workloads will still run on your stack on your infrastructure. However, your ZenML server will be managed by us on our cloud.

Compliance and governance won’t change - you are still in charge of where the data is stored, where processing happens and where models get deployed.

ZenML runs out-of-the-box with powerful orchestrators like Kubeflow and Airflow, and if the tools you want to use do not have a ZenML integration, you can easily integrate them yourself.
https://docs.zenml.io/platform-guide/set-up-your-mlops-platform

https://www.zenml.io/cloud

https://github.com/zenml-io/zenml

https://zenml.io/integrations
MLRun Y               Y Y Y     Y   Y Y    
Deepchecks           Y   Y Y     Y   Y     Y Open source Testing

Paid pricing for usage
 
Ray IO             Y   Y   Y     Y     Y   https://docs.ray.io/en/latest/index.html#
Wallaroo AI             Y     Y Y   Y Y   Y Y   https://wallaroo.ai/
https://portal.wallaroo.community/ - community version
Anyscale       Y                 Y            
Aimstack     Y           Y       Y Y          
Mage AI Y               Y       Y Y   Y Y    
ETIQ AI           Y             Y            
GitHub   Y                     Y Y   Y      
Legends
Yellow optional
Grey Not required for maturity level 1 (i.e. Google's MLOPs Maturity level 1)
Green Main components
Blue Additional information